CAPRENAL THERAPEUTICS

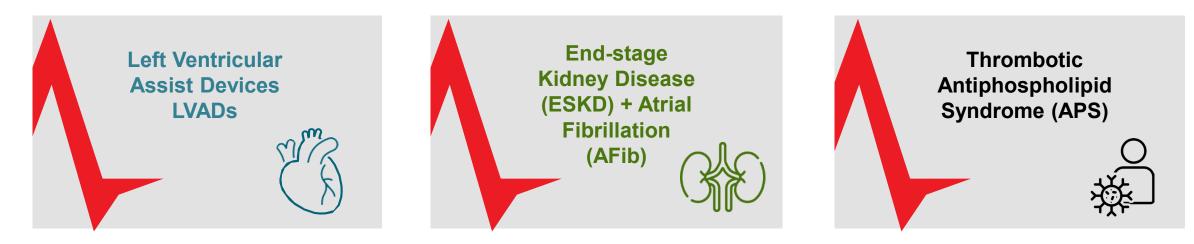
Cadrenal Therapeutics, Inc. NASDAQ: CVKD

May 2024

Caution Concerning Forward-looking Statements

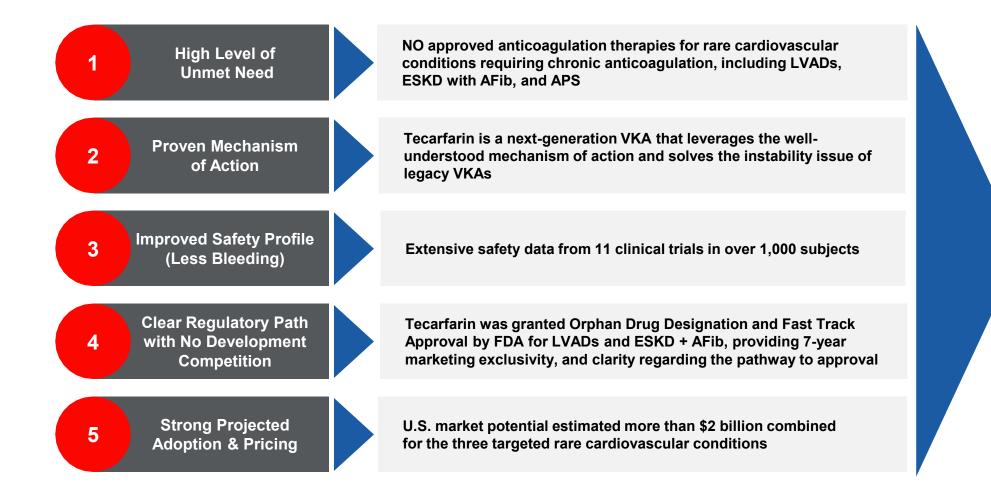
This document contains forward-looking statements. In addition, from time to time, we or our representatives may make forward-looking statements orally or in writing. We base these forward-looking statements on our expectations and projections about future events, which we derive from the information currently available to us. Such forward-looking statements relate to future events or our future performance, including: our financial performance and projections; our growth in revenue and earnings; and our business prospects and opportunities. You can identify forward-looking statements by those that are not historical in nature, particularly those that use terminology such as "may," "should," "expects," "anticipates," "contemplates," "believes," "plans," "projected," "predicts," "potential," or "hopes" or the negative of these or similar terms.

In evaluating these forward-looking statements, you should consider various factors, including: our ability to successfully develop and commercialize product candidates, our ability to raise capital when needed, and the competitive environment of our business. These and other factors may cause our actual results to differ materially from any forward-looking statement, including those risk factors disclosed in our Annual Report on Form 10-K for the year ended December 31, 2023 filed with the Securities and Exchange Commission on March 11, 2024. Forward-looking statements are only predictions. The forward-looking events discussed in this document and other statements made from time to time by us or our representatives may not occur, and actual events and results may differ materially and are subject to risks, uncertainties, and assumptions about us. We are not obligated to publicly update or revise any forward-looking statement, whether as a result of uncertainties and assumptions, the forward-looking events discussed in this document, and other statements made from time to time by us or our representatives might not occur.



Cadrenal Therapeutics Overview:

Late-stage Drug Company with Multiple Orphan-drug and Fast-track Designations


Developing tecarfarin, a late-stage novel oral and reversible anticoagulant (blood thinner) to prevent heart attacks, strokes and deaths due to blood clots in patients with rare cardiovascular conditions who require chronic anticoagulation

Targeted at conditions where (VKA) Vitamin K antagonist warfarin has failed to achieve sufficiently reliable anticoagulation and Direct Oral AntiCoagulants, or DOACs (Eliquis-class drugs), have not shown benefit

Key Investment Highlights for Tecarfarin Opportunity

Experienced management team with opportunistic commercial strategy

Leadership Team: Clinical to Commercial Expertise

Quang Pham CEO & Founder, Chairman

Douglas Losordo, MD Chief Medical Officer

NYULangone MEDICAL CENTER Northwestern University LONGEVERON

Matthew Szot, CPA Chief Financial Officer

SENESTECH ONVO bioscience

Jeff Cole Chief Operating Officer

John R. Murphy Board Member

Steven Zelenkofske, DO Board Member AstraZeneca sanofi aventis NOVARTIS Scientific

Glynn Wilson, PhD Board Member

Robert Lisicki Board Member

Scientific Advisory Board with Deep Experience in CV and Beyond

Christopher Granger, MD Professor of Medicine in the Division of Cardiology, *Duke University* Member, Duke Clinical Research Institute (DCRI)

Sean Pokorney, MD, MBA

Electrophysiologist and Assistant Professor of Medicine, **Duke University**

Eloine M. Hylek, MD, MPH

Professor of Medicine, **Boston University School of Medicine** Director of the Thrombosis and Anticoagulation Service at **Boston Medical Center (BMC)**

McMaster

University 🚟

Beth Israel Lahey Health Beth Israel Deaconess Medical Center

HARVARD MEDICAL SCHOOL

2010 X

> Baim Institute for Clinical Research

C. Michael Gibson, MD

Professor of Medicine, Harvard Medical School

Interventional Cardiologist, Beth Israel Deaconess Medical Center

President & CEO, Baim Institute for Clinical Research

Wolfgang C. Winkelmayer, MD, MPH

Chief, Section of Nephrology, Professor of Medicine, **Baylor University** Director, **Selzman Institute for Kidney Health**

Richard Whitlock, MD

Cardiac Surgeon and Professor of Surgery, *McMaster*

University Medical Center Investigator, *Population Health Research Institute*

Cleveland Clinic

Michael Lincoff, MD

Vice Chairman, Dept. of Cardiovascular Medicine, Cleveland Clinic

> Director of Clinical Research, Lerner Research Institute

The Problem: Certain Rare Heart Conditions Lack Effective Anticoagulation

Physicians are frustrated with warfarin outcomes and hesitant to prescribe DOACs more broadly, given the negative evidence in clinical trials

	Warfarin	DOACs (Pradaxa, Xarelto, Eliquis & Savaysa)
LVAD	 High frequency of hemorrhagic events despite warfarin therapy Unstable metabolism due to drug-drug interactions, genetic variability of elimination pathway 	 No ability to monitor the level of anticoagulation Cost and time of reversal compared to vitamin K is not acceptable for patients at high risk of bleeding or intervention LVAD patients excluded from approval studies DOACs not in guidelines for LVAD patients
ESKD+AFib	 Higher risk of bleeding in dialysis patients with AFib compared to DOACs Multiple dose adjustments to keep patients within International Normalized Ratio (INR) range Drug interaction in patients with multiple comorbidities 	 Limited head-to-head evidence; existing data fails to demonstrate benefit in thromboembolism and reveals stroke risk Not included in ESKD treatment guidelines Ambiguity in dosing recommendations

SIGNIFICANT **ISSUES** WITH CURRENT THERAPIES FOR THESE PATIENTS

The Solution: Tecarfarin Aims to Solve Warfarin's Major Problems and Fill Significant Market Void

Warfarin: Unreliable metabolism MAJOR PROBLEM

for patients with certain orphan diseases

Variable/Unreliable anticoagulation in patients at high risk for thrombotic events

Challenging to control despite nearly 70 years of use

Metabolism via the cytochrome P450 pathway potential drug-drug interactions

Significant variability in PK due to genetic variants and competition with other drugs

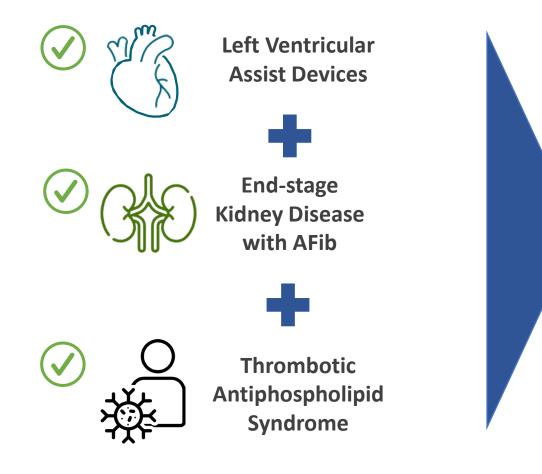
SOLUTION: Tecarfarin

SPECIFICALLY DESIGNED TO

solve the warfarin metabolism problem, thereby **DECREASING RISK OF STROKE & BLEEDING**

Metabolized via an alternate pathway that is abundant and essentially insaturable

Reliable, stable PK profile



STABLE ANTICOAGULATION with proven mechanism of action including patients with certain orphan diseases

Attractive Addressable Market Opportunities

U.S. market potential estimated more than \$2 billion for three targeted rare indications

Approximately >\$2 Billion

Combined Peak Annual Market Potential* (if approved by the FDA)

Financial Summary

Cap Table

Cash (at 3/31/24)	\$6.6 million
Debt	NONE
Common Shares Outstanding	16,008,469
Warrants – Investors (avg. \$1.75)	4,285,715
Warrants - Underwriter & Placement Agt. Warrants (avg. \$2.68)	389,071
Stock Options Outstanding (avg. \$0.90)	2,195,000

Q1 2024 Financial Results

Operating Expenses (excluding non-cash items)	\$1.6 million
Cash used in operating activities	\$1.8 million
Market Capitalization	
As of 5/14/24	\$7 million
Insider Ownership (Common Stock)	
Insider Ownership as Percent of Shares Outstanding	47%

Tecarfarin Clinical Development Pipeline

Potential 2024 catalysts for future milestones to build enterprise value

				Deve	elopment Ph	ase	
Program	Prioritized Target Indications	Regulatory Strategy/Status	Discovery	Preclinical	Phase I	Phase II	Phase III
	Left Ventricular Assist Devices (LVADs)	FDA Orphan Drug Designation Granted Developing Trial Protocol					
Tecarfarin	End Stage Kidney Disease with AFib	FDA Orphan Drug Designation Granted FDA Fast Track Designation Granted EMA Orphan Drug Application In Process					
	Thrombotic Antiphospholipid Syndrome (APS)	FDA Orphan Drug Application Pending Review Developing Trial Protocol					

Future milestones this year may include Ph 3 trial enrollment, anticipated data readouts and progress with strategic partnerships

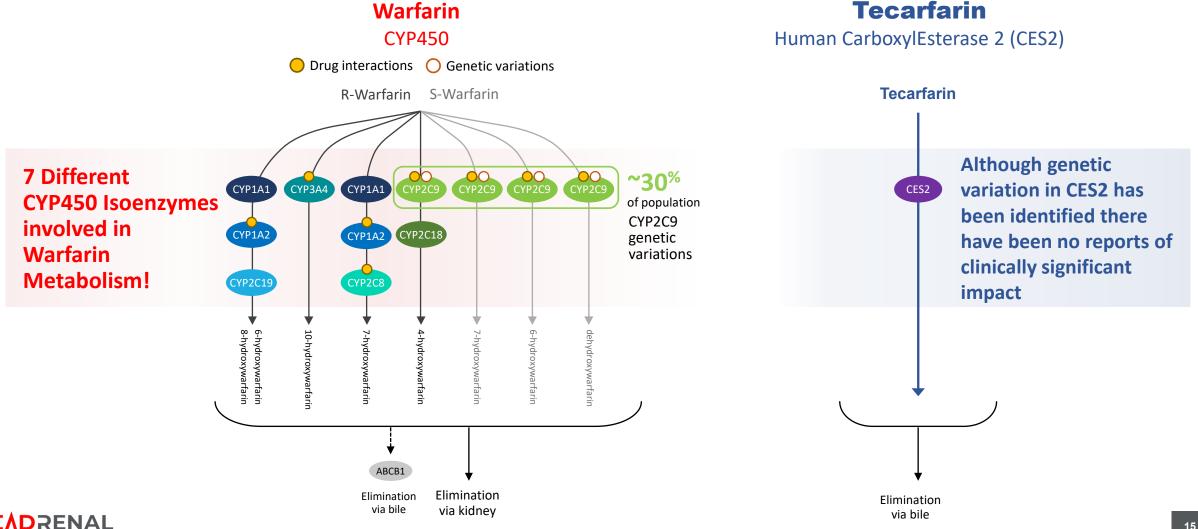
Why Cadrenal Now?

Tecarfarin is targeted for indications where it is **NOW CLEAR FROM DATA** that warfarin FAILS to achieve sufficiently stable anticoagulation and DOACs have clinically NOT shown benefit

Contact Us

Quang Pham CEO & Founder <u>quang.pham@cadrenal.com</u>

Matthew Szot CFO <u>matthew.szot@cadrenal.com</u>


APPENDIX

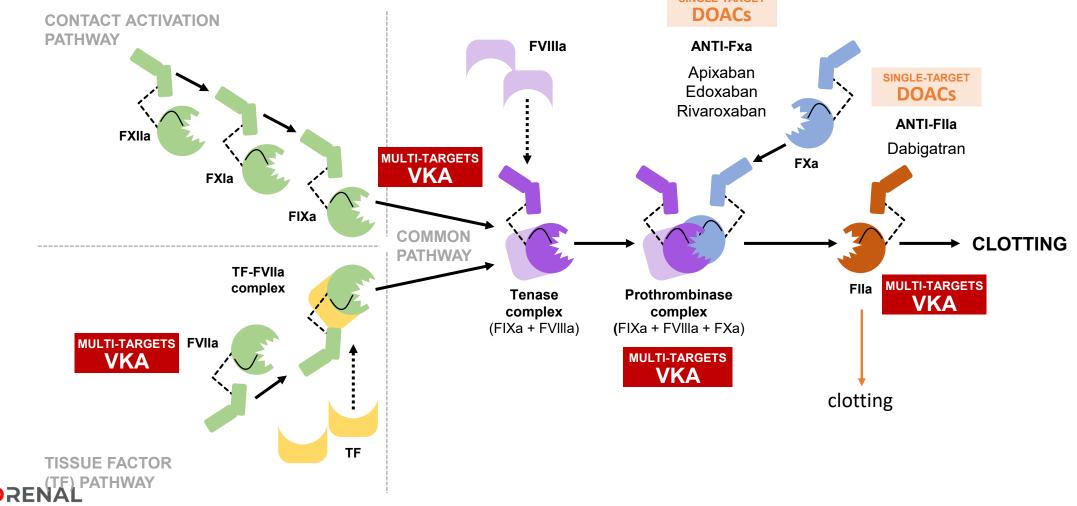
Tecarfarin's Metabolic Advantage

Tecarfarin is metabolized via an alternate pathway that is abundant and essentially insaturable, thereby avoiding the bottleneck in the CYP450 pathway where warfarin in metabolized.

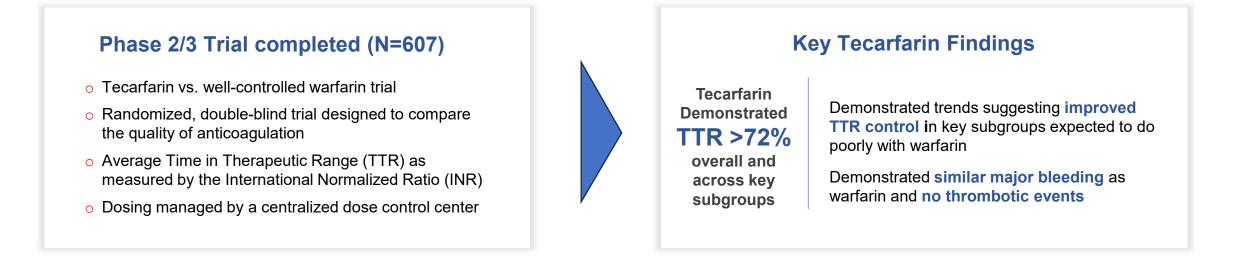
Warfarin Metabolism via CYP450 is Complicated by Known Competitors, Inhibitors and Inducers and the Established Impact of Genetic Variants

Enzymes	Substrates	Inhibitors	Inducers
СҮР 3А4	amlodipine, simvastatin, warfarin, amiodarone, sildenafil, midazolam, fluoxetine, haloperidol, codeine, oxycodone, methadone, fentanyl	ciprofloxacin, ketoconazole, ritonavir, methylprednisone, imatinib, tamoxifen, cimetidine, grapefruit juice	simvastatin, efavirenz, pentobarbital, carbamazepine, phenobarbital, phenytoin, valproic acid, caffeine
CYP IA2	alosetron, caffeine, duloxetine, melatonin, ramelteon, tacrine, tizanidine	ciprofloxacin, enoxacin, fluvoxamine, oral contraceptives, phenylpropanolamine	montelukast, phenytoin, smoking components of cigarettes
CYP 2C8	repaglinide, paclitaxel, methadone	gemfibrozil, fluvoxamine, ketoconazole, trimethoprim	rifampin
CYP 2C9	celecoxib, warfarin , phenytoin	amiodarone, fluconazole, miconazole, oxandrolone, capecitabine, etravirine, fluvastatin, metronidazole, Sulfinpyrazone, tigecycline	carbamazepine, rifampin, aprepitant, bosentan, phenobarbital, St. John's wort
CYP 2D6	lidocaine, metoprolol, haloperidol, fluoxetine, amitriptyline, metoclopramide, codeine, oxycosone, tramadol	amiodarone, chlorpromazine, citalopram, bupropion	rifampin, dexamethasone

Tecarfarin was specifically designed to avoid metabolism via the CYP450 Pathway, thus improving safety and efficacy over warfarin


Tecarfarin is Metabolized via the Human Carboxyl Esterase 2 Pathway (CES2) Provides More Effective, Safe, and More Consistent Anti-coagulation

Enzymes	Substrates	Inhibitors	Inducers	CES2 Substrate Drugs	
CYP 3A4	amlodipine, simvastatin, warfarin, amiodarone, sildenafil, midazolam, fluoxetine, haloperidol, codeine, oxycodone, methadone, fentanyl	ciprofloxacin, ketoconazole, ritonavir, methylprednisone, imatinib, tamoxifen, cimetidine, grapefruit juice	simvastatin, efavirenz, pentobarbital, carbamazepine, phenobarbital, phenytoin, valproic acid, caffeine	 Antiplateletes/Anticoagulants Acetylsalicylic acid Prasugrel Dabigatran etexilate Angiotensin receptor blockers 	CNS agents Cocaine Heroin 6-monoacetylmorphine Immunosuppressive agents
CYP IA2 CYP 2C8	alosetron, caffeine, duloxetine, melatonin, ramelteon, tacrine, tizanidine repaglinide, paclitaxel, methadone	ciprofloxacin, enoxacin, fluvoxamine, oral contraceptives, phenylpropanolamine gemfibrozil, fluvoxamine, ketoconazole, trimethoprim	montelukast, phenytoin, smoking components of cigarettes rifampin	 Candesartan cilexetil Olmesartan medoxomil Azilsartan medoxomil Antivitral agents Tenfovir disoproxil Adefovir dipivoxil Valacyclovir 	 Methylprednisolone sodium succinate Deflazacort Oncology agents Irinotecan Capecitabine Anesthetic drug Procaine
CYP 2C9	celecoxib, warfarin , phenytoin lidocaine, metoprolol,	amiodarone, fluconazole, miconazole, oxandrolone, capecitabine, etravirine, fluvastatin, metronidazole, Sulfinpyrazone, tigecycline amiodarone,	carbamazepine, rifampin, aprepitant, bosentan, phenobarbital, St. John's wort rifampin, dexamethasone		rates Identified
CYP 2D6	haloperidol, fluoxetine, amitriptyline, metoclopramide, codeine, oxycosone, tramadol	chlorpromazine, citalopram, bupropion		Genetic variation exists, but limited evidence of clinical impa	

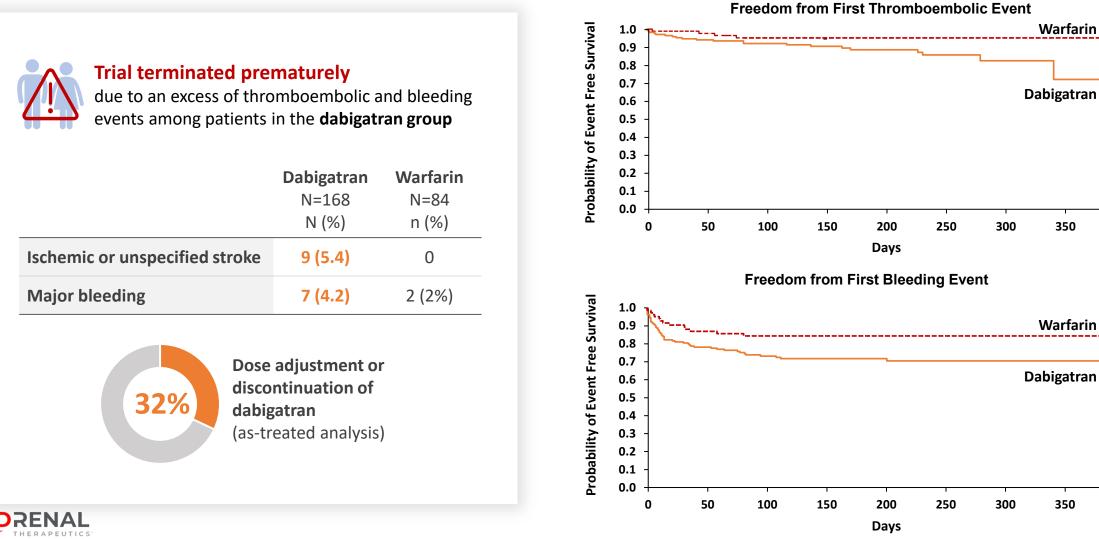


Vitamin K Antagonism Inhibits Multiple Factors (II, VII, IX, X, Proteins C & S) in the Clotting Cascade vs. Single Targets of Newer Agents

Proven mechanism of action resulting in clinically meaningful anticoagulation in certain conditions where DOACs have failed

Tecarfarin Demonstrates TTR Above Anticoagulation Control Threshold *Phase 2/3 trial shows Tecarfarin provides stable anticoagulation with >72% TTR overall and across key subgroups*

TTR of 70% or greater is generally accepted as the goal for stable anticoagulation with a VKA


In real world use of warfarin, TTR averages approximately 40-59%

Source: EmbraceAC Review by Whitlock et al., 2016

400

Dabigatran Versus Warfarin in Patients with Mechanical Heart Valves EXCESS RISK AND NO BENEFIT

Eikelboom, JW. et al. New England Journal of Medicine. 2013. DOI: 10.1056/NEJMoa1300615

400

TTR Decreases with CKD Severity for AFib Patients on Warfarin

AFib Patients with ESKD on Warfarin are Poorly Controlled with TTR of 42-51%, compared to the TTR goal of 70% or greater

- Time in Therapeutic Range (TTR)^{1,2,5}
 - Well-established FDA metric used to evaluate anticoagulation control (safety and efficacy)
 - Higher TTR levels correlate directly with improved clinical outcomes including rates of death, bleeding, myocardial infarction, stroke, and systemic embolism
- TTR predictive of clinical outcomes

RENAL

- Stage 4 and 5 CKD with AFib: Similar TTR cutoffs predictive of mortality and cardiovascular outcomes^{3,4}
- Overall TTR for AFib Patients with ESKD on warfarin is 42-51%⁶
- Only 21% of ESKD patients on dialysis using warfarin achieve TTR ≥60%⁶

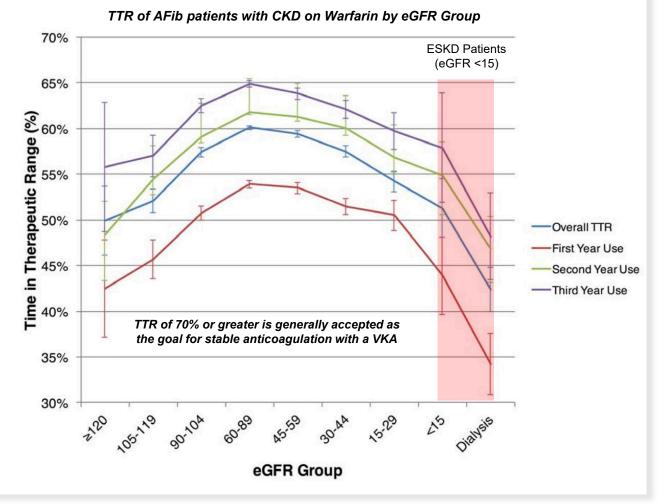
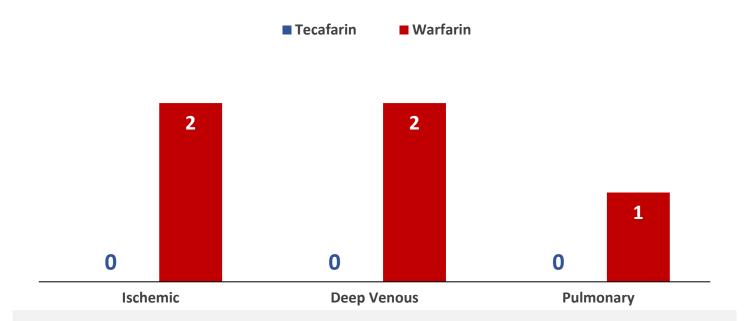


Figure 2. Warfarin Utilization and Anticoagulation Control in Patients with Atrial Fibrillation and Chronic Kidney Disease⁶

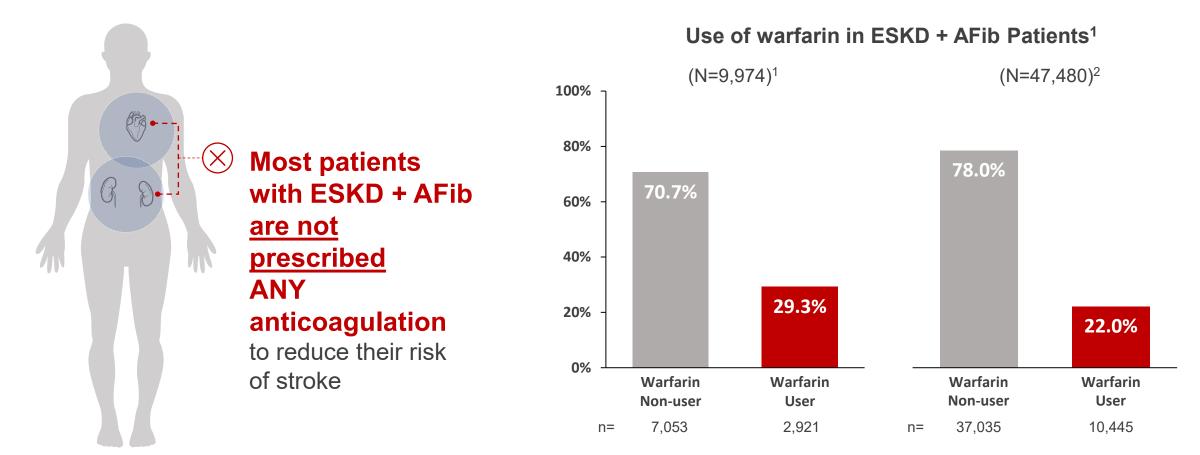

Phase 2/3 Trial Shows Tecarfarin is Well-Tolerated for Stroke and Thrombus Prevention, with Fewer Hemorrhagic Events

Tecarfarin had fewer thrombotic events compared to warfarin

Randomized, doubleblind clinical trial

> **N=607** Patients with indications for chronic anticoagulation

Tecarfarin (n = 304)**Warfarin** (n = 303)


Tecarfarin-treated subjects experienced numerically <u>fewer</u> major hemorrhages than the warfarin-treated patients and had numerically fewer thrombotic events

Whitlock RP, Fordyce CB, Midei MG, et al. A randomised, double blind comparison of tecarfarin, a novel vitamin K antagonist, with warfarin. The EmbraceAC Trial. Thromb Haemost. 2016;116(2):241-250. doi:10.1160/TH15-11-0910

Significant Underserved Patient Populations

Despite the significantly increased risk of stroke in ESKD patients with AFib, most patients are not anticoagulated due to the lack of evidence of benefit

1. Yoon CY, Noh J, Jhee JH, et al. Warfarin Use in Patients With Atrial Fibrillation Undergoing Hemodialysis: A Nationwide Population-Based Study. Stroke. 2017;48(9):2472-2479. doi:10.1161/STROKEAHA.117.017114

2. Randhawa MS, Vishwanath R, Rai MP, et al. Association Between Use of Warfarin for Atrial Fibrillation and Outcomes Among Patients With End-Stage Renal Disease: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(4):e202175. doi:10.1001/jamanetworkopen.2020.2175

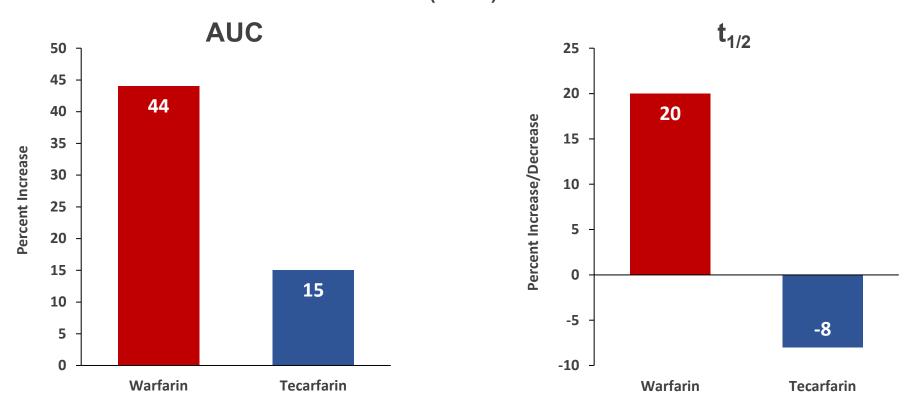
Tecarfarin Phase 1 PK Trial in Stage 4 CKD Patients Provides Evidence that CKD Does <u>Not</u> Alter Tecarfarin Exposure While Warfarin Exposure is Increased

Summary Table

% change between Stage 4 CKD patients vs healthy subjects matched for each drug using a randomized crossover design (n=23)

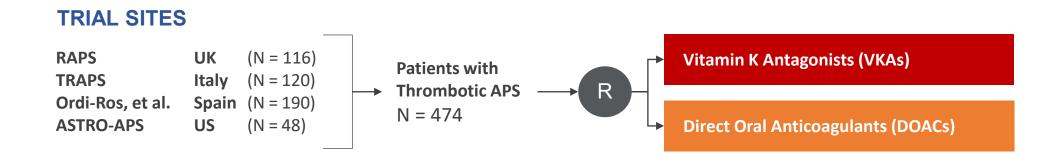
	Tecarfarin	(S)-Warfarin
	(% change)	(% change)
AUC	+15%	+44%
C _{max}	+6%	+7%
t _{1/2}	-8%	+19%

Result Highlights


	Tecarfarin	Warfarin
6	Elimination from the body was not affected by severe kidney dysfunction	Exposure increased 44% in Stage 4 CKD patients
6	 Half-life and the amount of drug in the body were similar in Stage 4 CKD patients and healthy subjects 	Plasma concentration and half-life increased in Stage 4 CKD patients

Tecarfarin may lead to dosing that is more predictable than warfarin in CKD patients who require anticoagulation therapy

Kidney Failure Has a Significant Impact on Warfarin PK vs Tecarfarin Tecarfarin metabolism not as impacted by kidney failure


Percent Increase in Exposure for Chronic Kidney Disease Subjects vs Healthy subjects for Warfarin and Tecarfarin (n =23)

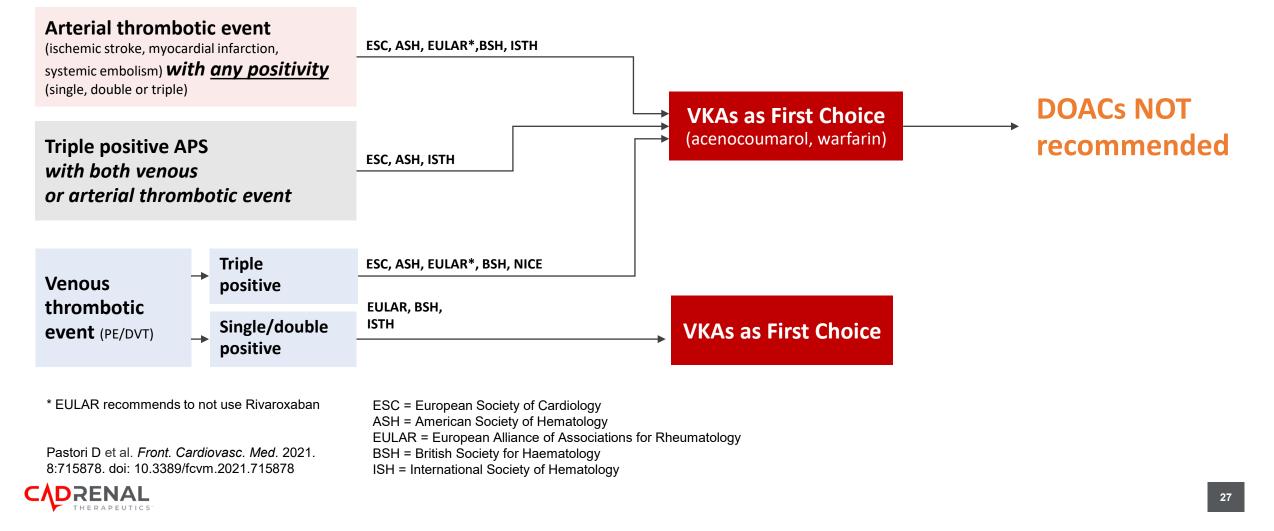
Albrecht D, Turakhia MP, Ries D, et al. Pharmacokinetics of Tecarfarin and Warfarin in Patients with Severe Chronic Kidney Disease. *Thromb Haemost.* 2017;117(11):2026-2033. doi:10.1160/TH16-10-0815

APS Patients Randomized to DOACs Have Increased Arterial Thrombosis Risk

RESULTS

Use of DOACs compared with VKAs was associated with:

- Increased odds of arterial thrombotic events, especially stroke
- No change in the odds of VTE or major bleeding
- Results were consistent within subgroups


Khairani CD, Bejjani A, Piazza G, et al. J Am Coll Cardiol. 2023;81(1):16-30. doi:10.1016/j.jacc.2022.10.008

	Higher in VKAs	Higher in	DOACs
0.008	0.1 1	10	100
All-cause death		◆	1.43 (0.44, 4.62)
Major bleeding		<u>←</u>	1.02 (0.42, 2.47)
Stroke			10.74 (2.29, 50.38)
Composite of arterial or vene	ous thrombosis		4.46 (1.12, 17.84)
Venous thromboembolism e	vents	♦	1.20 (0.31, 4.55)
Composite arterial thrombos	is		5.43 (1.87, 15.75)

Summary of Guidelines Recommendations on Anticoagulant Treatment Prescription in Patients with Antiphospholipid Syndrome

PATIENTS WITH DEFINITE APS

Eliquis 2023 Commercial

Eliquis highlights in its own commercial that you should not take for certain conditions.

"Don't take ELIQUIS if you have an artificial heart valve..."

ELIQUIS is not for patients who have antiphospholipid syndrome (APS).

Premium Pay for High Value Cardiovascular Orphan Drugs

Track record of recent transactions for orphan drugs in cardiovascular space

CAMZYOS

💾 Bristol Myers Squibb ຶ

 $Fold_{\mathbb{R}} \longrightarrow \mathbb{Q}P_{fizer}$

Developed by MyoKardia and the company was subsequently acquired by BMS for \$13 billion

Developed by FoldRx with \$88 million in private financing, before FoldRx was subsequently acquired by **Pfizer**

FDA DESIGNATIONS	Orphan Drug, Priority Review	FDA DESIGNATIONS	Orphan Drug, Fast Track, Priority Review & Breakthrough Therapy
EXPEDITED APPROVAL	Based on a <u>251-patient study called EXPLORER</u> , in which patients randomized to take the drug had significantly better peak oxygen consumption and improved on a widely used measurement of heart failure when compared to those who got a placebo.	EXPEDITED APPROVAL	Based on ATTR-ACT trial (Transthyretin Amyloidosis Cardiomyopathy Clinical Trial) - randomized 441 patients to tafamidis or placebo for 30 months
PRICE	\$89,500 a year (\$245/day) – one of the most expensive CV drugs	PRICE	\$225,000 a year (\$616/day) - the most expensive CV drug
NOTABLY	The approval came with a warning for the risk of heart failure and an FDA-mandated plan to manage that risk.	YEAR 2 SALES FOLLOWING LAUNCH	\$1.3 billion collectively for Vyndaqel [®] and Vyndamax [®]

